Page 42 of 42 FirstFirst ... 32404142
Results 616 to 623 of 623

Thread: Science is AWESOME!

  1. #616
    Join The Resistance Barbarella's Avatar
    Join Date
    Jun 2010
    Location
    Whorelando
    Posts
    7,086
    This is so amazing!

    ETA: Watching the final briefing now. Juno will go through some serious radiation tonight around 7:30pm. I'm hoping for the best. Looks like we'll know if everything was successful around 9:30pm tonight.
    Last edited by Barbarella; 07-04-2016 at 05:40 PM.

  2. #617
    Why is this happening to me? beanstew's Avatar
    Join Date
    Jun 2010
    Posts
    8,282
    On this day in 1969 Apollo 11 landed on the moon.

    It still blows my fucking mind to look up at the moon and know that there are footprints up there.
    Maybe for once, someone will call me "Sir" without adding, "You're making a scene."

  3. #618
    Why is this happening to me? beanstew's Avatar
    Join Date
    Jun 2010
    Posts
    8,282
    Not a Drill: SETI Is Investigating a Possible Extraterrestrial Signal From Deep Space
    An international team of scientists from the Search For Extraterrestrial Intelligence (SETI) are investigating mysterious signal spikes emitting from a 6.3 billion year-old star in the constellation Hercules–95 light years away from Earth. The implications are extraordinary and point to the possibility of a civilization far more advanced than our own.

    The unusual signal was originally detected on May 15, 2015 by the Russian Academy of Science-operated RATAN-600 radio telescope in Zelenchukskaya, Russia but was kept secret from the international community. Interstellar space reporter Paul Gilster broke the story after the researchers quietly circulated a paper announcing the detection of “a strong signal in the direction of HD164595.”

    The mysterious star’s designation is HD164595 and it’s considered to be sun-like in nature with a nearly identical metallic composition to our own star. So far, a single Neptune-like (but warmer) planet has been discovered in its orbit–HD 164595 b. But as Gilster explained, “there could, of course, be other planets still undetected in this system.”

    Decorated Italian SETI researcher and mathematician Claudio Maccone along with Russia’s Nikolai Bursov of the Special Astrophysical Observatory are the principal scientists working on the apparent discovery. They claim that “permanent monitoring of this target is needed.”

    “The signal conceivably fits the profile for an intentional transmission from an extraterrestrial source,” says Alan Boyle, author of “The Case for Pluto” who reported the story for Geekwire. “In any case, the blip is interesting enough to merit discussion by those who specialize in the search for extraterrestrial intelligence, or SETI.”

    The signal’s strength indicates that if it in-fact came from a isotropic beacon, the power source would have to be built by a Kardashev Type II civilization (The Kardashev scale is used to determine the progress of a civilization’s technological development by measuring how much energy was used to transmit an interstellar message.) An ‘Isotropic’ beacon means a communication source emitting a signal with equal power in all directions while promoting signal strength throughout travel.

    In his acclaimed work “Transmission of Information by Extraterrestrial Civilizations,” Soviet Astronomer Nikolai Kardashev explained that a Type II civilization would be able to harness the energy of their entire host star. The most common hypothetical example of this would be a Dyson Sphere–which is a massive artificial structure that could completely encapsulate a star and transfer the energy to a nearby planet.

    Basically, if the signal was beamed out into the galaxy without aim or direction, that would require an enormous amount of power to actually be detected. But what if the signal was beamed specifically at our solar system? Well, that would require less energy and could indicate the presence of a Kardashev Type I civilization–meaning that it could be a highly-technological, contemporary society that harnesses the solar energy emitted by its local star, much like our planet does with solar panels. This particular civilization’s social structure is theorized to be completely globalized and interconnected.

    “The signal is provocative enough that the RATAN-600 researchers are calling for permanent monitoring of this target,” said Gilster. And that’s exactly what is transpiring. As of last night, the SETI institute is diverting its Allen Telescope Array in northern California to investigate while their counterparts at METI International (Messaging Extraterrestrial Intelligence) will utilize Panama’s Boquete Optical Observatory.

    The detection of the mysterious signal and the ensuing investigations will be discussed at the IAA SETI Permanent Committee during the 67th International Astronautical Congress in Guadalajara, Mexico, on September 27th–the same day and location where Elon Musk will reveal his plans to colonize Mars. The Observer will be following up on both these stories from the Congress.

    Robin Seemangal focuses on NASA and advocacy for space exploration. He was born and raised in Brooklyn, where he currently resides. Find him on Instagram for more space-related content: @nova_road.


    It's going to turn out to be a toaster with a dodgy earth in the staff canteen.
    Maybe for once, someone will call me "Sir" without adding, "You're making a scene."

  4. #619
    the unhappy worker waitressboy's Avatar
    Join Date
    Jun 2010
    Location
    Buenos Aires
    Posts
    3,356
    I don't... What the... Is he serious? How...
    Deepak Chopra trying to break the record of the biggest pile of bullshit said in an interview. It's amazing. For all the wrong reasons.
    When he woke up, the dinosaur was still there.

  5. #620
    Alt Universe CliqueMember Spikey's Avatar
    Join Date
    Jul 2010
    Location
    Snarkletown
    Posts
    2,984
    Okay, so we already knew that ravens have empathy and can solve complex logic puzzles; now interestingly, they discovered ravens can effectively understand when it is possible they are being spied upon; iow form abstract or paranoid thoughts about other minds...http://www.wired.co.uk/article/ravens-theory-of-mind
    "Replies are a combination of nonsense, unrelated comments and inside jokes"‎

  6. #621
    Alt Universe CliqueMember Spikey's Avatar
    Join Date
    Jul 2010
    Location
    Snarkletown
    Posts
    2,984
    Trolls just want to have fun. Iow they are irl awful people too, likely to be psychopaths, sadists or machiavellians.

    http://www.sciencedirect.com/science...91886914000324

    - 5%-6% of the respondents enjoy trolling
    - trolling correlated positively with psychopathy, narcissism, machiavellianism, direct & vicarious sadism.
    - about 41% of the people prefer not to engage in online interaction at all
    "Replies are a combination of nonsense, unrelated comments and inside jokes"‎

  7. #622
    Why is this happening to me? beanstew's Avatar
    Join Date
    Jun 2010
    Posts
    8,282
    Nobel prize in physics awarded for discovery of gravitational waves
    Three American physicists have won the Nobel prize in physics for the discovery of gravitational waves, ripples in the fabric of spacetime that were first anticipated by Albert Einstein a century ago.

    Rainer Weiss has been awarded one half of the 9m Swedish kronor (£825,000) prize, announced by the Royal Swedish Academy of Sciences in Stockholm today. Kip Thorne and Barry Barish will share the other half of the prize.

    All three scientists have played a leading role in the Laser Interferometer Gravitational-Wave Observatory, or Ligo, experiment, which made the first historic observation of gravitational waves in September 2015.

    Weiss, emeritus professor of physics at Massachusetts Institute of Technology, is an experimentalist and made a major contribution to the concept, design, funding and eventual construction of Ligo.

    Kip Thorne, the Feynman professor of theoretical physics at California Institute of Technology, is a theorist and made crucial predictions of what the detection of a gravitational wave would actually look like and how to identify that signal within the data.

    Barry Barish, a former particle physicist at California Institute of Technology (now emeritus professor) is widely credited for getting the experiment off the ground. When he took over as the second director of Ligo in 1994, the project was at risk of being cancelled. Barish turned things around and saw it through to construction in 1999, and its first measurements three years later.

    In the end, detection required a peerless collaboration between experimentalists, who build one of the most sensitive detectors on Earth, and theorists, who figured out what a signal from two black holes colliding would actually look like.

    Ronald Drever, a Scottish physicist, who alongside Weiss and Thorne played a leading role in developing Ligo, died in March from dementia less than 18 months after gravitational waves were first detected. The Nobel prize is not normally awarded posthumously.

    Speaking at a press conference after the announcement, Weiss described receiving the phone call this morning as “really wonderful”. “I view this more as a thing that recognises the work of about 1,000 people. I hate to tell you but it’s as long as 40 years of people thinking about this, trying to make a detection … and slowly but surely getting the technology together to do it.”

    Weiss said he could not believe the team’s discovery at first. “It took us a long time – almost two months – to convince ourselves that we had seen something from the outside that was truly a gravitational wave.”

    Ahead of the announcement, the trio had been hotly tipped as potential winners and the choice of a discovery that captured the public imagination will be hugely popular. The detection of gravitational waves, announced in early 2016, marked the climax of a century of speculation and 25 years of developing a set of instruments so exquisitely sensitive that they could spot a distortion of a thousandth of the diameter of on atomic nucleus across a 4km length of laser beam.

    The phenomenon detected was the collision of two black holes. Using the world’s most sophisticated detector, the scientists listened for 20 thousandths of a second as the two giant black holes, one 35 times the mass of the sun, the other slightly smaller, circled around each other.

    At the beginning of the signal, their calculations told them how stars perish: the two objects had begun by circling each other 30 times a second. By the end of the 20 millisecond snatch of data, the two had accelerated to 250 times a second before the final collision and a dark, violent merger.

    Last year’s prize went to three British physicists for their work on exotic states of matter that may pave the way for quantum computers and other revolutionary technologies.

    On Monday, three American scientists shared the 2017 Nobel prize in physiology or medicine for their painstaking work on circadian rhythms. The Nobel prize in chemistry will be announced on Wednesday.
    Science IS AWESOME. LIGO is AWESOME and demonstrates the amazing things humans can achieve which is much needed in this shitshow of a year. Well done to everyone involved in this AWESOME project!
    Maybe for once, someone will call me "Sir" without adding, "You're making a scene."

  8. #623
    Why is this happening to me? beanstew's Avatar
    Join Date
    Jun 2010
    Posts
    8,282
    New frontier for science as astronomers witness neutron stars colliding
    Extraordinary event has been ‘seen’ for the first time, in both gravitational waves and light – ending decades-old debate about where gold comes from

    The collision of a pair of neutron stars, marked by ripples through the fabric of space-time and a flash brighter than a billion suns, has been witnessed for the first time in the most intensely observed astronomical event to date.

    The extraordinary sequence, in which the two ultra-dense stars spiralled inwards, violently collided and, in all likelihood, immediately collapsed into a black hole, was first picked up by the US-based Laser Interferometer Gravitational-Wave Observatory (Ligo).

    As its twin detectors, in Louisiana and Washington state, picked up tremors in space-time that had spilled out from the merger 130m light years away, an alert went out to astronomers across the globe. Within hours, 70 space- and ground-based telescopes swivelled to observe the red-tinged afterglow, making it the first cosmic event to be “seen” in both gravitational waves and light.

    Dave Reitze, executive director of Ligo, said: “What is amazing about this discovery is it is the first time we’ve got a full picture of one of the most violent, cataclysmic events in the universe. This is the most intense observational campaign there has ever been.”

    Einstein first predicted the existence of gravitational waves a century ago, but the first experimental proof that space itself can be stretched and squeezed took until 2015, when Ligo scientists detected a collision of black holes. But this dark merger, and the three detected since, were invisible to conventional telescopes. As the stars collided, they emitted an intense beam of gamma rays and the sky was showered with heavy elements, resolving a decades-old debate about where gold and platinum come from.

    Neutron stars are the smallest, densest stars known to exist: about 12 miles wide, with a teaspoon of neutron star material having a mass of about a billion tons. The core is a soup of pure neutrons, while the crust is smooth, solid and 10 billion times stronger than steel.

    The 100-second hum picked up by Ligo told the story of how the two stars, each slightly heavier than the sun, approached their death. Initially separated by 200 miles, they circled each other 30 times a second. As they whirled inwards, accelerating to 2,000 orbits each second, the signal rose in pitch like a slide whistle.

    Two seconds later, Nasa’s Fermi space telescope picked up an intense burst of gamma rays, emitted as shockwaves rushed through jets of matter funnelled out of the poles during the monumental impact of the collision.

    What happened next is uncertain. A neutron star weighing more than twice the mass of the sun (the combined mass here) has never been seen before – but neither has a black hole so small. Theoretical predictions suggest an almost instantaneous gravitational collapse into a black hole is most likely.

    “Neutron stars are at this sweet spot between a star and a black hole,” said Prof Andreas Freise, a Ligo project scientist at the University of Birmingham. “When two of them collide, we expect them to immediately collapse into a black hole, leaving behind a bit of dust and stuff.”

    David Shoemaker, spokesman for the Ligo Scientific Collaboration, said: “It’s [probably] the first observation of a black hole being created where there was none before, which is pretty darn cool.”

    The observations herald a new era of rapid-response astronomy, in which transient and unexpected cosmic events can be observed in detail for the first time. When Ligo’s software picked up a signal at 1:41pm UK time on 17 August, Shoemaker was one of a small team at Ligo to be alerted by a ringtone on his phone reserved for when black holes or neutron stars collide.

    “My phone went off and I smiled,” he said.

    Within an hour, the detection had been confirmed by Virgo, a European gravitational wave detector near Pisa, the source of the signal had been triangulated to a small patch of sky and a global alert was triggered.

    Prof Stephen Smartt, of Queen’s University Belfast, was leading a five-day observation run of supernovae on the New Technology Telescope at La Silla, Chile, when the news came in.

    “We dropped everything and pointed at that bit of sky,” he said. “This was the most unusual object we’d ever seen.”

    Smartt’s team, and those on other telescopes, observed the faint new blob and measured its spectrum to assess the chemical composition. The blob was a fireball of radioactive heavy chemical elements, known as a kilonova, that had been blown out from the collision at one fifth of the speed of light shortly after the gamma ray burst.

    Previously, scientists had speculated that the sheer force of neutron star collisions would be enough to force extra neutrons into the nuclei of atoms, forging heavy elements like gold and platinum, but until now this idea was purely theoretical.

    “People have been looking for that forever,” said Freise.

    “This is the first real confirmation that heavy elements such as gold, platinum and uranium are either solely or predominantly produced in binary neutron star collisions,” said Reitze. “The wedding band on your finger or the gold watch you’re wearing was most likely produced a billion years ago by two neutron stars colliding. That’s pretty cool.”

    Earlier this month, three US scientists who played a crucial role in the development of Ligo were awarded the Nobel prize in physics for the first detection of gravitational waves. Shoemaker pointed out that two of the new laureates – and others – had been working on the project long before it captured the world’s attention

    “This kind of thing doesn’t happen because there are suddenly neat instruments,” he said. “It’s decades of work and people working together in a collaborative way. It’s quite phenomenal.”

    The findings are published on Monday in a series of papers in journals including Science, Nature and Physics Review Letters.
    Now that is FUCKING AWESOME! And I love the concept of "rapid response astronomy"!
    Maybe for once, someone will call me "Sir" without adding, "You're making a scene."

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •